
Rapid Development of An
Assembler Using Python

Miki Tebeka
mtebeka@qualcomm.com

mailto:mtebeka@qualcomm.com

About Me

 Software Process Engineer in Qualcomm Israel
 Started using Python around 1998
 Use Python wherever I can

 Currently around 90%+ of my code is in Python
 Written from small scripts to a linker and a

source level GUI debugger
 Little activity in Python + OSS development

 Also wxPython, PLY, ...

Background I

 It all started from Conway's Law:
In every organization there will always be one

person who knows what is going on. That
person must be fired.

 Luckily for me, I wasn't that person
 However I found out that there is a team writing

code for a home grown micro processor in
machine code

 Promised to deliver them an assembler in two
days
 Only way my boss would let me do it

Background II

 Did manage to pull it through
 However I cheated :)

 This talk will teach you how to cheat as well

Main Idea

 Lexer?
 We don't need no stinkin' lexer

 Parser?
 We don't need no stinkin' parser

 The Python interpreter will do all the parsing for
us
 Users actually write Python code
 We'll execfile to execute the code

User Code Example

 MEM1 = 0x200
 add(r0, r2, r3)
 sub(r2, r4, r4)
 load(r2, MEM1)
label('L1')
 move(r2, r7)
 jmp(L1)

The Big Picture

 Each command is composed of four instruction
code bits and twelve data bits

 Labels are just location in memory
 We will use inheritance for similar commands
 Set execution environment before calling
execfile

 All commands will be stored in a list called
PROGRAM

Main Class
class ASM:
 '''Base ASM instruction'''
 def __init__(self):
 self.file, self.line = here()
 PROGRAM.append(self)

 def genbits(self):
 '''Generate bits, 'code' and '_genbits'
 will be defined in each derived class
 '''
 return (self.code << INST_SHIFT) |
 self._genbits()

ALU Operation
class ALU3(ASM):
 '''ALU instruction with 3 operands'''
 def __init__(self, src1, src2, dest):
 ASM.__init__(self)
 self.src1 = src1
 self.src2 = src2
 self.dest = dest

 def _genbits(self):
 return (self.src1 << SLOT1_SHIFT) | \
 (self.src2 << SLOT2_SHIFT) | \
 (self.dest << SLOT3_SHIFT)

Finally A “real” Instruction

class add(ALU3):
 '''`add' instruction'''
 code = 0

class sub(ALU3):
 '''`sub' instruction'''
 code = 1

Handling Labels

def label(name):
 '''Setting a label'''
 ENV[name] = len(PROGRAM)

Setting Up the Environment

Add registers
for i in range(8):
 ENV["r%d" % i] = i

Add operators
for op in (add, sub, move, load, store, label,
 jmp):
 ENV[op.__name__] = op

Parsing

 execfile(infile, ENV, {})

Generating Output (binary)

 a = array("H") # Unsigned short array
 for cmd in PROGRAM:
 a.append(cmd.genbits())
 open(outfile, "wb").write(a.tostring())

Debug Information

 Use Python's Exception mechanism to catch
errors

 If we get a SyntaxError we can use
e.filename and e.lineno

 For other exception we need to work a bit
harder

 During coding we store line information in each
instruction using inspect module

 Debug file is “filename:line” for each
address

Summary – The Good

 Can spit out an assembler very fast
 Supported assembler has a very strong macro

system
 All of Python

 Cross platform
 Check out for that byte order though

 Easy to extend
 Took few hours to implement new commands in

version 0.2

Summary – The Bad

 Users find syntax unusual
 Only Python syntax is supported
 Labels are not “Natural”

 You define it as string but use it as a variable
 Code can not be divided to modules

 Can't separate compilation and linkage
 Code is position dependent

Resources

 Article in UnixReview
 http://tinyurl.com/d62f3

 inspect module
 http://docs.python.org/lib/module-inspect.html

 execfile
 http://www.python.org/doc/2.4.2/lib/built-in-funcs.html

http://docs.python.org/lib/module-inspect.html
http://www.python.org/doc/2.4.2/lib/built-in-funcs.html

Questions?

