Rapid Development of An
Assembler Using Python

Miki Tebeka
mtebeka@qualcomm.com

mailto:mtebeka@qualcomm.com

About Me

o Software Process Engineer in Qualcomm Israel
o Started using Python around 1998
o Use Python wherever | can

Currently around 90%+ of my code is in Python

o Written from small scripts to a linker and a
source level GUI debugger

o Little activity in Python + OSS development
Also wxPython, PLY, ...

Background |

o It all started from Conway's Law:

In every organization there will always be one
person who knows what is going on. That
person must be fired.

o Luckily for me, | wasn't that person

o However | found out that there is a team writing
code for a home grown micro processor in
machine code

O© Promised to deliver them an assembler in two
days
Only way my boss would let me do it

Background ||

© Did manage to pull it through
However | cheated :)

o This talk will teach you how to cheat as well

Main Ildea

o Lexer?

We don't need no stinkin' lexer
o Parser?

We don't need no stinkin' parser

o The Python interpreter will do all the parsing for
us

Users actually write Python code
We'll execfile to execute the code

User Code Example

MEM1 = 0x200

add(r0, r2, r3)

sub (r2, r4, r4)

load(r2, MEMI1)
label ('L1"')

move (r2, r7)

Jmp (L1)

The Big Picture

o0 Each command is composed of four instruction
code bits and twelve data bits

o Labels are just location in memory
o We will use inheritance for similar commands

O Set execution environment before calling
execfile

o All commands will be stored in a list called
PROGRAM

Main Class

class ASM:
'"''"Base ASM instruction'''
def 1nit (self):
self.file, self.line = here/()
PROGRAM. append (self)

def genbits(self):
'''Generate bits, 'code' and ' genbits'
wilill be defined 1n each derived class
return (self.code << INST SHIFT) |
self. genbits()

ALU Operation

class ALU3 (ASM) :

'"''ALU instruction with 3 operands'''

def 1init (self, srcl, src2Z, dest):
ASM. 1nit (self)
self.srcl = srcl
self.src2 = src2

self.dest = dest

def genbits(self):
return (self.srcl << SLOT1 SHIFT)
(self.src2 << SLOT2 SHIFT)
(self.dest << SLOT3 SHIFT)

\

\

Finally A “real” Instruction

class add (ALU3) :
""" "add' instruction'''

code = 0

class sub (ALU3) :
""" sub' instruction'''

code = 1

Handling Labels

def label (name) :
'''Setting a label'''
ENV [name] = len (PROGRAM)

Setting Up the Environment

Add registers
for 1 i1n range(8) :
ENV["rsd" % 1] = 1
Add operators
for op in (add, sub, move, load, store, label,
Jmp) :
ENV[op. name | = op

Parsing

execfile(infile, ENV, {})

Generating Output (binary)

a = array ("H") # Unsigned short array
for cmd in PROGRAM:
a.append (cmd.genbits ())

open (outfile, "wb").write(a.tostring())

Debug Information

o Use Python's Exception mechanism to catch
errors

o If we geta SyntaxError we can use
e.filename and e.lineno

O For other exception we need to work a bit
narder

o During coding we store line information in each
instruction using inspect module

o Debug file is “filename: 1ine” for each
address

Summary — The Good

o Can spit out an assembler very fast

O Supported assembler has a very strong macro
system

All of Python
O Cross platform

Check out for that byte order though
o Easy to extend

Took few hours to implement new commands in
version 0.2

Summary — The Bad

o Users find syntax unusual
o Only Python syntax is supported
O Labels are not "Natural”
You define it as string but use it as a variable
o0 Code can not be divided to modules
Can't separate compilation and linkage
o0 Code is position dependent

Resources

O Article in UnixReview
http://tinyurl.com/d62f3
O inspect module

http://docs.python.org/lib/module-inspect.html
O execfile
http://www.python.org/doc/2.4.2/lib/built-in-funcs.html

http://docs.python.org/lib/module-inspect.html
http://www.python.org/doc/2.4.2/lib/built-in-funcs.html

Questions?

